

ENABLING EFFICIENT AND OPERATIONAL MOBILITY IN LARGE HETEROGENEOUS IP NETWORKS

Deploying MIPv6 in operational networks

Presentation at the French IPv6 Worldwide summit, Cannes, 14-15.11.2006

Wolfgang Fritsche, IABG

Mobility - what the user wants

- Growth of the Mobile Internet
 - Growing number of mobile Internet users
 - Growing diversity of mobile Internet devices (PDA, cellphone, smartphone, ...)
 - Increasing heterogenity of access networks (GSM, 3G, WLAN, WiMax, ...)
- Efficient support of mobility in the Internet required
- Importance of transparency
 - Mobility support should be transparent to users and applications
- MIPv6 approach
 - MIPv6 offers this transparent mobility support by influencing the routing of IP packets

Reference scenario

Overview of ENABLE project

- ENABLE at a glance
 - Research project funded by the European Commission
 - 8 European and one Chinese partner
 - Duration: 2006 2007
 - Budget: 3,792 M€
- Goal of ENALBE
 - Enable deployment of efficient and operational mobility as a service in large scale IPv6 network environments
 - Taking into account also the transition from current IPv4 networks
 - Research and contribution to standardization fora (IETF, 3GPP, etc.)
 - Validation through laboratory experiments (prototypes, testing, etc.)
- More information
 - ENABLE project web site <u>http://www.ist-enable.org</u>

Requirements for operational deployment of MIPv6

- Improvement of Mobile IPv6 scalability
 - Dynamic provisioning of configuration data on terminals and HAs
 - Load-sharing across HAs
- Improvement of reliability
 - Solutions for **HA failover** (no single point of failure)
- Control of mobility service
 - Service authorization based on a AAA infrastructure
- Enable offering of "premium" network features
 - **On-demand and secure activation** of fast handovers, QoS, etc.
- Integration of Mobile IPv6 in real-life environments
 - Coexistence with middle-boxes (firewalls, VPN concentrators, etc.)
 - Deployment of Mobile IPv6 in IPv4-only accesses

Bootstrapping - Motivation

- Goal
 - Addressing the operational requirements for

 dynamic provisioning of configuration data on terminals and HAs
 MIPv6 service authorization
- Configuration data
 - HA address
 - □ Required on MN
 - □ Used for registering Binding Updates with HA
 - MN's Home Address
 - $\hfill\square$ Required on MN
 - □ Used for communication with other nodes
 - □ Could change if home network change
 - Keying Material
 - $\hfill\square$ Required on MN and HA
 - Used to set up a security association (IPsec, Authentication Protocol) between MN and HA

Bootstrapping - Involved service entities

Bootstrapping - Architectures investigated by IETF

- Split scenario
 - Mobility Service Authorizer (MSA) is different from Access Service Authorizer (ASA)
 - Assignment of Home Agent done using DNS
- Integrated scenario
 - Mobility Service Authorizer (MSA) is the same as Access Service Authorizer (ASA)
 - Assignment of Home Agent done using DHCPv6

Bootstrapping - Steps of the split scenario

- Getting network access
 - Using DHCPv6 or IPv6 stateless address autoconfiguration
- Home Agent assignment done by DNS request from MN
 - Requesting for a FQDN of a HA (e.g. ha.service-provider.com)
 - Requesting for a MIPv6 service (e.g. mip6.ipv6.service-provider.com)
- Setting up an IPsec security association between HA and MN
 - Use of Internet Key Exchange version 2 (IKEv2) for this purpose
 - For this purpose the HA at the MSP has to contact the AAA service of the MSA for MN authentication and service authorization
- Assignment of a Home Address to MN
 - Done within the IKEv2 exchange
 - MN could propose a Home Address
- Update of the MN's DNS entry with the new Home Address
 - Triggering of DNS update within Binding Update from MN to HA
 - HA updates DNS directly or further delegates this to AAA

Bootstrapping - Steps of the integrated scenario

- Getting network access
 - Using DHCPv6 or IPv6 stateless address autoconfiguration
- Home Agent assignment can be done in different ways
 - HA is always selected by the MSP
 - HA can be assigned in different ways
 - □ using DHCPv6
 - with support of EAP in access network
 - without support of EAP in the access network
 - □ using EAP to assign FQDN / IP address of HA in case DHCPv6 is not supported
 - ENABLE designs an architecture supporting several bootstrapping alternatives, the operator can select the most appropriate one
- Remaining steps identical to split scenario
 - Setting up an IPsec security association between HA and MN
 - Assignment of a Home Address to MN
 - Update of the MN's DNS entry with the new Home Address

HA load sharing - Motivation

- A HA selection process allows a MSP to efficiently share the load between multiple HAs
- The MSP has to select an adequate HA
 - during bootstrapping phase of the integrated scenario
 - during a HA relocation phase
 - possibility to achieve an optimized HA assignment during the bootstrapping phase of the split scenario
 - possibility to provide continously a geographically close HA to moving MNs (local HA assignment)
 - □ possibility to substitute failing HAs
 - D possibility to assign a HA meeting certain performance criteria

HA load sharing - Architectural components

- Identification of a set of HA selection parameters measured on each HA
- Distributed collection of the selection parameters from the HAs
- Selection of the most suitable HA based on the collected selection parameters
- Assignment of the selected HA

HA load sharing - Possible selection parameters

- The following, possible initial set of selection parameters has been identified by ENABLE:
 - number of active home registrations
 - □ The closer a HA gets to its maximal foreseen number of active home registrations, the less preferred it should be selected
 - current bandwidth availability at HA
 - □ The closer a HA gets to its maximal available bandwidth, the less preferred it should be selected
 - upcoming maintenance of HA
 - □ If there is a HA maintenance service upcoming, the HA shouldn't be selected
- The HA load sharing architecture will leave room for additional parameters, which can be specific to some deployment/vendor/operator

HA load sharing - Collection of selection parameters

HA load sharing - Functional overview

- HA-DB/Manager will
 - periodically collect selection parameters from each HA using e.g. SNMPv3 (HA-m interface)
- MSP-AAA will
 - access HA-DB/Manager for reading HAs selection parameters when needed using a data base protocol such as SQL or LDAPv3 (HA-b interface)

during bootstrapping

□ during HA relocation

- calculate load for each HA (weighted sum of selection parameters) and finally select and assign the best HA
 - \Box m = a*x + b*y + c*z + ..., with x, y, z, ... being the normalized selection parameters, and a, b, c, ... being the weighting factors of the respective selection parameters
 - □ the setting of the weighting factors a, b, c is done by the MSP according to its specific policy

Further information

- Visit ENABLE project webite www.ist-enable.com
- Contact

Wolfgang Fritsche

Manager Advanced IP Services

Phone: +49 89 6088-2897 Email: fritsche@iabg.de Web: www.iabg.de

This work has been partially supported by the European Commission FP6 IST ENABLE project.